Cargando…
Prediction of aromatase inhibitory activity using the efficient linear method (ELM)
Aromatase inhibition is an effective treatment strategy for breast cancer. Currently, several in silico methods have been developed for the prediction of aromatase inhibitors (AIs) using artificial neural network (ANN) or support vector machine (SVM). In spite of this, there are ample opportunities...
Autores principales: | Shoombuatong, Watshara, Prachayasittikul, Veda, Prachayasittikul, Virapong, Nantasenamat, Chanin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614109/ https://www.ncbi.nlm.nih.gov/pubmed/26535037 http://dx.doi.org/10.17179/excli2015-140 |
Ejemplares similares
-
Classification of P-glycoprotein-interacting compounds using machine learning methods
por: Prachayasittikul, Veda, et al.
Publicado: (2015) -
Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives
por: Prachayasittikul, Veda, et al.
Publicado: (2014) -
Aromatase inhibitory activity of 1,4-naphthoquinone derivatives and QSAR study
por: Prachayasittikul, Veda, et al.
Publicado: (2017) -
Meta-iAVP: A Sequence-Based Meta-Predictor for Improving the Prediction of Antiviral Peptides Using Effective Feature Representation
por: Schaduangrat, Nalini, et al.
Publicado: (2019) -
ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides
por: Schaduangrat, Nalini, et al.
Publicado: (2019)