Cargando…
Lightweight wrist photoplethysmography for heavy exercise: motion robust heart rate monitoring algorithm
The challenge of heart rate monitoring based on wrist photoplethysmography (PPG) during heavy exercise is addressed. PPG is susceptible to motion artefacts, which have to be mitigated for accurate heart rate estimation. Motion artefacts are particularly apparent for wrist devices, for example, a sma...
Autores principales: | Lai, Po-Hsiang, Kim, Insoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614154/ https://www.ncbi.nlm.nih.gov/pubmed/26609397 http://dx.doi.org/10.1049/htl.2014.0097 |
Ejemplares similares
-
Wrist-Based Photoplethysmography Assessment of Heart Rate and Heart Rate Variability: Validation of WHOOP
por: Bellenger, Clint R., et al.
Publicado: (2021) -
A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts
por: Ye, Yalan, et al.
Publicado: (2017) -
Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms
por: Baciu, Vlad-Eusebiu, et al.
Publicado: (2023) -
Noise-Robust Heart Rate Estimation Algorithm from Photoplethysmography Signal with Low Computational Complexity
por: Shin, JaeWook, et al.
Publicado: (2019) -
Wrist Photoplethysmography Signal Quality Assessment for Reliable Heart Rate Estimate and Morphological Analysis
por: Moscato, Serena, et al.
Publicado: (2022)