Cargando…

Validation experiments on finite element models of an ostrich (Struthio camelus) cranium

The first finite element (FE) validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus). Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific f...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuff, Andrew R., Bright, Jen A., Rayfield, Emily J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614885/
https://www.ncbi.nlm.nih.gov/pubmed/26500813
http://dx.doi.org/10.7717/peerj.1294
_version_ 1782396440308350976
author Cuff, Andrew R.
Bright, Jen A.
Rayfield, Emily J.
author_facet Cuff, Andrew R.
Bright, Jen A.
Rayfield, Emily J.
author_sort Cuff, Andrew R.
collection PubMed
description The first finite element (FE) validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus). Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific finite element (FE) models. The FE models contained segmented cortical and trabecular bone, sutures and the keratinous rhamphotheca as identified from micro-CT scan data. Each of these individual materials was assigned isotropic material properties either from the literature or from nanoindentation, and the FE models compared to the ex-vivo results. The FE models generally replicate the location of peak strains and reflect the correct mode of deformation in the rostral region. The models are too stiff in regions of experimentally recorded high strain and too elastic in regions of low experimentally recorded low strain. The mode of deformation in the low strain neurocranial region is not replicated by the FE models, and although the models replicate strain orientations to within 10° in some regions, in most regions the correlation is not strong. Cranial sutures, as has previously been found in other taxa, are important for modifying both strain magnitude and strain patterns across the entire skull, but especially between opposing the sutural junctions. Experimentally, we find that the strains on the surface of the rhamphotheca are much lower than those found on nearby bone. The FE models produce much higher principal strains despite similar strain ratios across the entirety of the rhamphotheca. This study emphasises the importance of attempting to validate FE models, modelling sutures and rhamphothecae in birds, and shows that whilst location of peak strain and patterns of deformation can be modelled, replicating experimental data in digital models of avian crania remains problematic.
format Online
Article
Text
id pubmed-4614885
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-46148852015-10-23 Validation experiments on finite element models of an ostrich (Struthio camelus) cranium Cuff, Andrew R. Bright, Jen A. Rayfield, Emily J. PeerJ Bioengineering The first finite element (FE) validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus). Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific finite element (FE) models. The FE models contained segmented cortical and trabecular bone, sutures and the keratinous rhamphotheca as identified from micro-CT scan data. Each of these individual materials was assigned isotropic material properties either from the literature or from nanoindentation, and the FE models compared to the ex-vivo results. The FE models generally replicate the location of peak strains and reflect the correct mode of deformation in the rostral region. The models are too stiff in regions of experimentally recorded high strain and too elastic in regions of low experimentally recorded low strain. The mode of deformation in the low strain neurocranial region is not replicated by the FE models, and although the models replicate strain orientations to within 10° in some regions, in most regions the correlation is not strong. Cranial sutures, as has previously been found in other taxa, are important for modifying both strain magnitude and strain patterns across the entire skull, but especially between opposing the sutural junctions. Experimentally, we find that the strains on the surface of the rhamphotheca are much lower than those found on nearby bone. The FE models produce much higher principal strains despite similar strain ratios across the entirety of the rhamphotheca. This study emphasises the importance of attempting to validate FE models, modelling sutures and rhamphothecae in birds, and shows that whilst location of peak strain and patterns of deformation can be modelled, replicating experimental data in digital models of avian crania remains problematic. PeerJ Inc. 2015-10-13 /pmc/articles/PMC4614885/ /pubmed/26500813 http://dx.doi.org/10.7717/peerj.1294 Text en © 2015 Cuff et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Bioengineering
Cuff, Andrew R.
Bright, Jen A.
Rayfield, Emily J.
Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title_full Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title_fullStr Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title_full_unstemmed Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title_short Validation experiments on finite element models of an ostrich (Struthio camelus) cranium
title_sort validation experiments on finite element models of an ostrich (struthio camelus) cranium
topic Bioengineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614885/
https://www.ncbi.nlm.nih.gov/pubmed/26500813
http://dx.doi.org/10.7717/peerj.1294
work_keys_str_mv AT cuffandrewr validationexperimentsonfiniteelementmodelsofanostrichstruthiocameluscranium
AT brightjena validationexperimentsonfiniteelementmodelsofanostrichstruthiocameluscranium
AT rayfieldemilyj validationexperimentsonfiniteelementmodelsofanostrichstruthiocameluscranium