Cargando…
Prognostic Value of Adaptive Textural Features–The Effect of Standardizing Nuclear First-Order Gray Level Statistics and Mixing Information from Nuclei Having Different Area
Background: Nuclear texture analysis is a useful method to obtain quantitative information for use in prognosis of cancer. The first-order gray level statistics of a digitized light microscopic nuclear image may be influenced by variations in the image input conditions. Therefore, we have previously...
Autores principales: | Nielsen, Birgitte, Danielsen, Håvard E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615946/ https://www.ncbi.nlm.nih.gov/pubmed/16823177 http://dx.doi.org/10.1155/2006/370173 |
Ejemplares similares
-
The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
por: Nielsen, Birgitte, et al.
Publicado: (2012) -
Prognostic Classification of Early Ovarian Cancer Based on very Low Dimensionality Adaptive Texture Feature Vectors from Cell Nuclei from Monolayers and Histological Sections
por: Nielsen, Birgitte, et al.
Publicado: (2001) -
The Use of Fractal Features from the Periphery of Cell Nuclei as a Classification Tool
por: Nielsen, Birgitte, et al.
Publicado: (1999) -
A Review of Caveats in Statistical Nuclear Image Analysis
por: Schulerud, Helene, et al.
Publicado: (1998) -
Entropy-Based Adaptive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sarcomas
por: Nielsen, Birgitte, et al.
Publicado: (2015)