Cargando…

Clarification of functional differences between the hallux and lesser toes during the single leg stance: immediate effects of conditioning contraction of the toe plantar flexion muscles

[Purpose] The purpose of this study was to determine the functional differences of the plantar flexion muscles of the hallux and lesser toes during the single leg stance by comparing postural sway in different conditioning contraction interventions. [Subjects] Thirty-four healthy, young males and fe...

Descripción completa

Detalles Bibliográficos
Autores principales: Saeki, Junya, Tojima, Michio, Torii, Suguru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4616073/
https://www.ncbi.nlm.nih.gov/pubmed/26504272
http://dx.doi.org/10.1589/jpts.27.2701
Descripción
Sumario:[Purpose] The purpose of this study was to determine the functional differences of the plantar flexion muscles of the hallux and lesser toes during the single leg stance by comparing postural sway in different conditioning contraction interventions. [Subjects] Thirty-four healthy, young males and females participated in this study. [Methods] The front-back and right-left direction components of maximal displacement and postural sway velocity during the single leg stance were measured in various conditioning contraction interventions for the plantar flexion muscles of the hallux or lessor toes. [Results] The main findings of this study were as follows: 1) the front-back direction component of maximal displacement was reduced by conditioning contraction of the plantar flexion muscles of the hallux, and 2) the front-back direction component of the postural sway velocity was reduced by conditioning contraction of the plantar flexion muscles of the lesser toes during the single leg stance. [Conclusion] The plantar flexion muscles of the lesser toes control the postural sway velocity. Furthermore, the plantar flexion muscles of the hallux appear to control the amplitude of postural sway.