Cargando…

Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes

BACKGROUND: The New Zealand glowworm is the larva of a carnivorous fungus gnat that produces bioluminescence to attract prey. The bioluminescent system of the glowworm is evolutionarily distinct from other well-characterised systems, especially that of the fireflies, and the molecules involved have...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharpe, Miriam L., Dearden, Peter K., Gimenez, Gregory, Krause, Kurt L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617951/
https://www.ncbi.nlm.nih.gov/pubmed/26486607
http://dx.doi.org/10.1186/s12864-015-2006-2
Descripción
Sumario:BACKGROUND: The New Zealand glowworm is the larva of a carnivorous fungus gnat that produces bioluminescence to attract prey. The bioluminescent system of the glowworm is evolutionarily distinct from other well-characterised systems, especially that of the fireflies, and the molecules involved have not yet been identified. We have used high throughput sequencing technology to produce a transcriptome for the glowworm and identify transcripts encoding proteins that are likely to be involved in glowworm bioluminescence. RESULTS: Here we report the sequencing and annotation of the first transcriptome of the glowworm, and a differential analysis of expression from the glowworm light organ compared with non-light organ tissue. The analysis identified six transcripts encoding proteins that are potentially involved in glowworm bioluminescence. Three of these proteins are members of the ANL superfamily of adenylating enzymes, with similar amino acid sequences to that of the luciferase enzyme found in fireflies (31 to 37 % identical), and are candidate luciferases for the glowworm bioluminescent system. The remaining three transcripts encode putative aminoacylase, phosphatidylethanolamine-binding and glutathione S-transferase proteins. CONCLUSIONS: This research provides a basis for further biochemical studies into how the glowworm produces light, and a source of genetic information to aid future ecological and evolutionary studies of the glowworm. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2006-2) contains supplementary material, which is available to authorized users.