Cargando…

Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation an...

Descripción completa

Detalles Bibliográficos
Autores principales: Cenik, Can, Cenik, Elif Sarinay, Byeon, Gun W., Grubert, Fabian, Candille, Sophie I., Spacek, Damek, Alsallakh, Bilal, Tilgner, Hagen, Araya, Carlos L., Tang, Hua, Ricci, Emiliano, Snyder, Michael P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617958/
https://www.ncbi.nlm.nih.gov/pubmed/26297486
http://dx.doi.org/10.1101/gr.193342.115
Descripción
Sumario:Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.