Cargando…
A novel channel selection method for optimal classification in different motor imagery BCI paradigms
BACKGROUND: For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginati...
Autores principales: | Shan, Haijun, Xu, Haojie, Zhu, Shanan, He, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618360/ https://www.ncbi.nlm.nih.gov/pubmed/26489759 http://dx.doi.org/10.1186/s12938-015-0087-4 |
Ejemplares similares
-
An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System
por: Feng, Jian Kui, et al.
Publicado: (2019) -
Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection
por: Ortega, Julio, et al.
Publicado: (2016) -
Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization
por: Qi, Yingji, et al.
Publicado: (2020) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP
por: Ko, Li-Wei, et al.
Publicado: (2017)