Cargando…
Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors
Human pluripotent stem cells (hPSCs) offer the opportunity to generate neuronal cells, including nociceptors. Using a chemical-based approach, we generated nociceptive sensory neurons from HUES6 embryonic stem cells and retrovirally reprogrammed induced hPSCs derived from fibroblasts. The nociceptiv...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618592/ https://www.ncbi.nlm.nih.gov/pubmed/26321143 http://dx.doi.org/10.1016/j.stemcr.2015.07.010 |
_version_ | 1782396948390608896 |
---|---|
author | Eberhardt, Esther Havlicek, Steven Schmidt, Diana Link, Andrea S. Neacsu, Cristian Kohl, Zacharias Hampl, Martin Kist, Andreas M. Klinger, Alexandra Nau, Carla Schüttler, Jürgen Alzheimer, Christian Winkler, Jürgen Namer, Barbara Winner, Beate Lampert, Angelika |
author_facet | Eberhardt, Esther Havlicek, Steven Schmidt, Diana Link, Andrea S. Neacsu, Cristian Kohl, Zacharias Hampl, Martin Kist, Andreas M. Klinger, Alexandra Nau, Carla Schüttler, Jürgen Alzheimer, Christian Winkler, Jürgen Namer, Barbara Winner, Beate Lampert, Angelika |
author_sort | Eberhardt, Esther |
collection | PubMed |
description | Human pluripotent stem cells (hPSCs) offer the opportunity to generate neuronal cells, including nociceptors. Using a chemical-based approach, we generated nociceptive sensory neurons from HUES6 embryonic stem cells and retrovirally reprogrammed induced hPSCs derived from fibroblasts. The nociceptive neurons expressed respective markers and showed tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) voltage-gated sodium currents in patch-clamp experiments. In contrast to their counterparts from rodent dorsal root ganglia, TTXr currents of hPSC-derived nociceptors unexpectedly displayed a significantly more hyperpolarized voltage dependence of activation and fast inactivation. This apparent discrepancy is most likely due to a substantial expression of the developmentally important sodium channel NAV1.5. In view of the obstacles to recapitulate neuropathic pain in animal models, our data advance hPSC-derived nociceptors as a better model to study developmental and pathogenetic processes in human nociceptive neurons and to develop more specific small molecules to attenuate pain. |
format | Online Article Text |
id | pubmed-4618592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-46185922015-11-24 Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors Eberhardt, Esther Havlicek, Steven Schmidt, Diana Link, Andrea S. Neacsu, Cristian Kohl, Zacharias Hampl, Martin Kist, Andreas M. Klinger, Alexandra Nau, Carla Schüttler, Jürgen Alzheimer, Christian Winkler, Jürgen Namer, Barbara Winner, Beate Lampert, Angelika Stem Cell Reports Report Human pluripotent stem cells (hPSCs) offer the opportunity to generate neuronal cells, including nociceptors. Using a chemical-based approach, we generated nociceptive sensory neurons from HUES6 embryonic stem cells and retrovirally reprogrammed induced hPSCs derived from fibroblasts. The nociceptive neurons expressed respective markers and showed tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) voltage-gated sodium currents in patch-clamp experiments. In contrast to their counterparts from rodent dorsal root ganglia, TTXr currents of hPSC-derived nociceptors unexpectedly displayed a significantly more hyperpolarized voltage dependence of activation and fast inactivation. This apparent discrepancy is most likely due to a substantial expression of the developmentally important sodium channel NAV1.5. In view of the obstacles to recapitulate neuropathic pain in animal models, our data advance hPSC-derived nociceptors as a better model to study developmental and pathogenetic processes in human nociceptive neurons and to develop more specific small molecules to attenuate pain. Elsevier 2015-08-28 /pmc/articles/PMC4618592/ /pubmed/26321143 http://dx.doi.org/10.1016/j.stemcr.2015.07.010 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Report Eberhardt, Esther Havlicek, Steven Schmidt, Diana Link, Andrea S. Neacsu, Cristian Kohl, Zacharias Hampl, Martin Kist, Andreas M. Klinger, Alexandra Nau, Carla Schüttler, Jürgen Alzheimer, Christian Winkler, Jürgen Namer, Barbara Winner, Beate Lampert, Angelika Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title | Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title_full | Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title_fullStr | Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title_full_unstemmed | Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title_short | Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors |
title_sort | pattern of functional ttx-resistant sodium channels reveals a developmental stage of human ipsc- and esc-derived nociceptors |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618592/ https://www.ncbi.nlm.nih.gov/pubmed/26321143 http://dx.doi.org/10.1016/j.stemcr.2015.07.010 |
work_keys_str_mv | AT eberhardtesther patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT havliceksteven patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT schmidtdiana patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT linkandreas patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT neacsucristian patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT kohlzacharias patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT hamplmartin patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT kistandreasm patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT klingeralexandra patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT naucarla patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT schuttlerjurgen patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT alzheimerchristian patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT winklerjurgen patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT namerbarbara patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT winnerbeate patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors AT lampertangelika patternoffunctionalttxresistantsodiumchannelsrevealsadevelopmentalstageofhumanipscandescderivednociceptors |