Cargando…

IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein

IscR proteins are known as transcriptional regulators for Fe–S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformat...

Descripción completa

Detalles Bibliográficos
Autores principales: Remes, Bernhard, Eisenhardt, Benjamin D, Srinivasan, Vasundara, Klug, Gabriele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618611/
https://www.ncbi.nlm.nih.gov/pubmed/26235649
http://dx.doi.org/10.1002/mbo3.279
Descripción
Sumario:IscR proteins are known as transcriptional regulators for Fe–S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe–S clusters featuring (Cys)(3)(His)(1) ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe–S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe–S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe–S cluster ligation scheme with only a single cysteine involved.