Cargando…
Glucose availability determines silver nanoparticles toxicity in HepG2
BACKGROUND: The increasing body of evidence suggest that nanomaterials toxicity is associated with generation of oxidative stress. In this paper we investigated the role of respiration in silver nanoparticles (AgNPs) generated oxidative stress and toxicity. Since cancer cells rely on glucose as the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618757/ https://www.ncbi.nlm.nih.gov/pubmed/26493216 http://dx.doi.org/10.1186/s12951-015-0132-2 |
_version_ | 1782396972876955648 |
---|---|
author | Zuberek, Mariusz Wojciechowska, Dominika Krzyzanowski, Damian Meczynska-Wielgosz, Sylwia Kruszewski, Marcin Grzelak, Agnieszka |
author_facet | Zuberek, Mariusz Wojciechowska, Dominika Krzyzanowski, Damian Meczynska-Wielgosz, Sylwia Kruszewski, Marcin Grzelak, Agnieszka |
author_sort | Zuberek, Mariusz |
collection | PubMed |
description | BACKGROUND: The increasing body of evidence suggest that nanomaterials toxicity is associated with generation of oxidative stress. In this paper we investigated the role of respiration in silver nanoparticles (AgNPs) generated oxidative stress and toxicity. Since cancer cells rely on glucose as the main source of energy supply, glucose availability might be an important determinant of NPs toxicity. METHODS: AgNPs of 20 nm nominal diameter were used as a model NPs. HepG2 cells were cultured in the media with high (25 mM) or low (5.5 mM) glucose content and treated with 20 nm AgNPs. AgNPs-induced toxicity was tested by neutral red assay. Generation of H(2)O(2) in mitochondria was evaluated by use of mitochondria specific protein indicator HyPer-Mito. Expression of a 77 oxidative stress related genes was assessed by qPCR. The activity of antioxidant enzymes was estimated colorimetrically by dedicated methods in cell homogenates. RESULTS: AgNPs-induced dose-dependent generation of H(2)O(2) and toxicity was observed. Toxicity of AgNPs towards cells maintained in the low glucose medium was significantly lower than the toxicity towards cells growing in the high glucose concentration. Scarceness of glucose supply resulted in upregulation of the endogenous antioxidant defence mechanisms that in turn alleviated AgNPs dependent ROS generation and toxicity. CONCLUSION: Glucose availability can modify toxicity of AgNPs via elevation of antioxidant defence triggered by oxidative stress resulted from enhanced oxidative phosphorylation in mitochondria and associated generation of ROS. Presented results strengthen the idea of strong linkage between NPs toxicity and intracellular respiration and possibly other mitochondria dependent processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-015-0132-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4618757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46187572015-10-25 Glucose availability determines silver nanoparticles toxicity in HepG2 Zuberek, Mariusz Wojciechowska, Dominika Krzyzanowski, Damian Meczynska-Wielgosz, Sylwia Kruszewski, Marcin Grzelak, Agnieszka J Nanobiotechnology Research BACKGROUND: The increasing body of evidence suggest that nanomaterials toxicity is associated with generation of oxidative stress. In this paper we investigated the role of respiration in silver nanoparticles (AgNPs) generated oxidative stress and toxicity. Since cancer cells rely on glucose as the main source of energy supply, glucose availability might be an important determinant of NPs toxicity. METHODS: AgNPs of 20 nm nominal diameter were used as a model NPs. HepG2 cells were cultured in the media with high (25 mM) or low (5.5 mM) glucose content and treated with 20 nm AgNPs. AgNPs-induced toxicity was tested by neutral red assay. Generation of H(2)O(2) in mitochondria was evaluated by use of mitochondria specific protein indicator HyPer-Mito. Expression of a 77 oxidative stress related genes was assessed by qPCR. The activity of antioxidant enzymes was estimated colorimetrically by dedicated methods in cell homogenates. RESULTS: AgNPs-induced dose-dependent generation of H(2)O(2) and toxicity was observed. Toxicity of AgNPs towards cells maintained in the low glucose medium was significantly lower than the toxicity towards cells growing in the high glucose concentration. Scarceness of glucose supply resulted in upregulation of the endogenous antioxidant defence mechanisms that in turn alleviated AgNPs dependent ROS generation and toxicity. CONCLUSION: Glucose availability can modify toxicity of AgNPs via elevation of antioxidant defence triggered by oxidative stress resulted from enhanced oxidative phosphorylation in mitochondria and associated generation of ROS. Presented results strengthen the idea of strong linkage between NPs toxicity and intracellular respiration and possibly other mitochondria dependent processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12951-015-0132-2) contains supplementary material, which is available to authorized users. BioMed Central 2015-10-22 /pmc/articles/PMC4618757/ /pubmed/26493216 http://dx.doi.org/10.1186/s12951-015-0132-2 Text en © Zuberek et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zuberek, Mariusz Wojciechowska, Dominika Krzyzanowski, Damian Meczynska-Wielgosz, Sylwia Kruszewski, Marcin Grzelak, Agnieszka Glucose availability determines silver nanoparticles toxicity in HepG2 |
title | Glucose availability determines silver nanoparticles toxicity in HepG2 |
title_full | Glucose availability determines silver nanoparticles toxicity in HepG2 |
title_fullStr | Glucose availability determines silver nanoparticles toxicity in HepG2 |
title_full_unstemmed | Glucose availability determines silver nanoparticles toxicity in HepG2 |
title_short | Glucose availability determines silver nanoparticles toxicity in HepG2 |
title_sort | glucose availability determines silver nanoparticles toxicity in hepg2 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618757/ https://www.ncbi.nlm.nih.gov/pubmed/26493216 http://dx.doi.org/10.1186/s12951-015-0132-2 |
work_keys_str_mv | AT zuberekmariusz glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 AT wojciechowskadominika glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 AT krzyzanowskidamian glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 AT meczynskawielgoszsylwia glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 AT kruszewskimarcin glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 AT grzelakagnieszka glucoseavailabilitydeterminessilvernanoparticlestoxicityinhepg2 |