Cargando…

Design and Characterization of Bioengineered Cancer-Like Stem Cells

Cancer stem cells (CSCs) are a small subset of cancer cells responsible for maintenance and progression of several types of cancer. Isolation, propagation, and the differentiation of CSCs in the proper stem niches expose the intrinsic difficulties for further studies. Here we show that induced cance...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Sungpil, Park, Hongsuk, Jarboe, Elke A., Peterson, C. Matthew, Bae, You Han, Janát-Amsbury, Margit M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619203/
https://www.ncbi.nlm.nih.gov/pubmed/26488294
http://dx.doi.org/10.1371/journal.pone.0141172
Descripción
Sumario:Cancer stem cells (CSCs) are a small subset of cancer cells responsible for maintenance and progression of several types of cancer. Isolation, propagation, and the differentiation of CSCs in the proper stem niches expose the intrinsic difficulties for further studies. Here we show that induced cancer like stem cells (iCLSCs) can be generated by in vitro oncogenic manipulation of mouse embryonic stem cells (mESCs) with well-defined oncogenic elements; SV40 LTg and HrasV12 by using a mouse stem virus long terminal repeat (MSCV-LTR)-based retroviral system. The reprogrammed mESCs using both oncogenes were characterized through their oncogenic gene expression, the enhancement of proliferation, and unhampered maintenance of stem properties in vitro and in vivo. In addition, these transformed cells resulted in the formation of malignant, immature ovarian teratomas in vivo. To successfully further expand these properties to other organs and species, more research needs to be done to fully understand the role of a tumor- favorable microenvironment. Our current study has provided a novel approach to generate induced cancer like stem cells through in vitro oncogenic reprogramming and successfully initiated organ-specific malignant tumor formation in an orthotopic small animal cancer model.