Cargando…
Large-Scale Biomonitoring of Remote and Threatened Ecosystems via High-Throughput Sequencing
Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach cou...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619546/ https://www.ncbi.nlm.nih.gov/pubmed/26488407 http://dx.doi.org/10.1371/journal.pone.0138432 |
Sumario: | Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach could be used to determine biodiversity metrics from bulk environmental samples collected as part of a large-scale biomonitoring program. Here we show that both morphological and DNA sequence-based analyses are suitable for recovery of individual taxonomic richness, estimation of proportional abundance, and calculation of biodiversity metrics using a set of 24 benthic samples collected in the Peace-Athabasca Delta region of Canada. The high-throughput sequencing approach was able to recover all metrics with a higher degree of taxonomic resolution than morphological analysis. The reduced cost and increased capacity of DNA sequence-based approaches will finally allow environmental monitoring programs to operate at the geographical and temporal scale required by industrial and regulatory end-users. |
---|