Cargando…

Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice

BACKGROUND: Stem cells of intensely regenerative tissues are susceptible to cellular damage. Although the response to this process in hematopoietic stem cells (HSCs) is crucial, the mechanisms by which hematopoietic homeostasis is sustained are not completely understood. Aging increases reactive oxy...

Descripción completa

Detalles Bibliográficos
Autores principales: Porto, Marcella L., Rodrigues, Bianca P., Menezes, Thiago N., Ceschim, Sara L., Casarini, Dulce E., Gava, Agata L., Pereira, Thiago Melo C., Vasquez, Elisardo C., Campagnaro, Bianca P., Meyrelles, Silvana S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619579/
https://www.ncbi.nlm.nih.gov/pubmed/26498041
http://dx.doi.org/10.1186/s12929-015-0201-8
Descripción
Sumario:BACKGROUND: Stem cells of intensely regenerative tissues are susceptible to cellular damage. Although the response to this process in hematopoietic stem cells (HSCs) is crucial, the mechanisms by which hematopoietic homeostasis is sustained are not completely understood. Aging increases reactive oxygen species (ROS) levels and inflammation, which contribute to increased proliferation, senescence and/or apoptosis, leading to self-renewal premature exhaustion. In this study, we assessed ROS production, DNA damage, apoptosis, senescence and plasticity in young, middle and aged (2-, 12- and 24-month-old, respectively) C57BL/6 J mice. RESULTS: Aged HSCs showed an increase in intracellular superoxide anion (1.4-fold), hydrogen peroxide (2-fold), nitric oxide (1.6-fold), peroxynitrite/hidroxil (2.6-fold) compared with young cells. We found that mitochondria and NADPHox were the major sources of ROS production in the three groups studied, whereas CYP450 contributed in middle and aged, and xanthine oxidase only in aged HSCs. In addition, we observed DNA damage and apoptosis in the middle (4.2- and 2-fold, respectively) and aged (6- and 4-fold, respectively) mice; aged mice also exhibited a significantly shorter telomere length (−1.8-fold) and a lower expression of plasticity markers. CONCLUSION: These data suggest that aging impairs the functionality of HSCs and that these age-associated alterations may affect the efficacy of aged HSC recovery and transplantation.