Cargando…
Spatiotemporal Context Awareness for Urban Traffic Modeling and Prediction: Sparse Representation Based Variable Selection
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to...
Autores principales: | Yang, Su, Shi, Shixiong, Hu, Xiaobing, Wang, Minjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619804/ https://www.ncbi.nlm.nih.gov/pubmed/26496370 http://dx.doi.org/10.1371/journal.pone.0141223 |
Ejemplares similares
-
An object-based sparse representation model for spatiotemporal image fusion
por: Asefpour Vakilian, Afshin, et al.
Publicado: (2022) -
Kernel Sparse Representation with Hybrid Regularization for On-Road Traffic Sensor Data Imputation
por: Chen, Xiaobo, et al.
Publicado: (2018) -
Sparse orthogonal population representation of spatial context in the retrosplenial cortex
por: Mao, Dun, et al.
Publicado: (2017) -
Application of Sparse Representation in Bioinformatics
por: Han, Shuguang, et al.
Publicado: (2021) -
Feature Selection and Pedestrian Detection Based on Sparse Representation
por: Yao, Shihong, et al.
Publicado: (2015)