Cargando…
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, mo...
Autores principales: | Li, Jiaojiao, Niu, Shanzhou, Huang, Jing, Bian, Zhaoying, Feng, Qianjin, Yu, Gaohang, Liang, Zhengrong, Chen, Wufan, Ma, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619856/ https://www.ncbi.nlm.nih.gov/pubmed/26495975 http://dx.doi.org/10.1371/journal.pone.0140579 |
Ejemplares similares
-
Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose Image Induced Total Variation Prior
por: Huang, Jing, et al.
Publicado: (2013) -
Dynamic Positron Emission Tomography Image Restoration via a Kinetics-Induced Bilateral Filter
por: Bian, Zhaoying, et al.
Publicado: (2014) -
Motion guided Spatiotemporal Sparsity for high quality 4D-CBCT reconstruction
por: Liu, Yang, et al.
Publicado: (2017) -
Statistical iterative reconstruction algorithm for X-ray phase-contrast CT
por: Hahn, Dieter, et al.
Publicado: (2015) -
Lagrangian Statistics and Intermittency in Gulf of Mexico
por: Lin, Liru, et al.
Publicado: (2017)