Cargando…
Mantle Branch-Specific RNA Sequences of Moon Scallop Amusium pleuronectes to Identify Shell Color-Associated Genes
Amusium pleuronectes (Linnaeus) that secretes red- and white-colored valves in two branches of mantle tissues is an excellent model for shell color research. High-throughput transcriptome sequencing and profiling were applied in this project to reveal the detailed molecular mechanism of this phenoty...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619886/ https://www.ncbi.nlm.nih.gov/pubmed/26496197 http://dx.doi.org/10.1371/journal.pone.0141390 |
Sumario: | Amusium pleuronectes (Linnaeus) that secretes red- and white-colored valves in two branches of mantle tissues is an excellent model for shell color research. High-throughput transcriptome sequencing and profiling were applied in this project to reveal the detailed molecular mechanism of this phenotype differentiation. In this study, 50,796,780 and 54,361,178 clean reads were generated from the left branch (secreting red valve, RS) and right branch (secreting white valve, WS) using the Illumina Hiseq 2000 platform. De novo assembly generated 149,375 and 176,652 unigenes with an average length of 764 bp and 698 bp in RS and WS, respectively. Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway analysis indicated that the differentially expressed genes were involved in 228 signaling pathways, and 43 genes were significantly enriched (P<0.01). Nineteen of 20 differentially expressed vitellogenin genes showed significantly high expression in RS, which suggested that they probably played a crucial role in organic pigment assembly and transportation of the shell. Moreover, 687 crystal formation-related (or biomineralization-related) genes were detected in A. pleuronectes, among which 144 genes exhibited significant difference between the two branches. Those genes could be classified into shell matrix framework participants, crystal nucleation and growth-related elements, upstream regulation factors, Ca level regulators, and other classifications. We also identified putative SNP and SSR markers from these samples which provided the markers for genetic diversity analysis, genetic linkage, QTL analysis. These results provide insight into the complexity of shell color differentiation in A. pleuronectes so as valuable resources for further research. |
---|