Cargando…
Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection
The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from...
Autores principales: | Ma, Xin, Guo, Jing, Sun, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620426/ https://www.ncbi.nlm.nih.gov/pubmed/26543860 http://dx.doi.org/10.1155/2015/425810 |
Ejemplares similares
-
PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection
por: Wang, Jing, et al.
Publicado: (2013) -
Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
por: Radovic, Milos, et al.
Publicado: (2017) -
Kernel Partial Least Squares Feature Selection Based on Maximum Weight Minimum Redundancy
por: Liu, Xiling, et al.
Publicado: (2023) -
Maximum Relevance Minimum Redundancy Dropout with Informative Kernel Determinantal Point Process
por: Saffari, Mohsen, et al.
Publicado: (2021) -
AlPOs Synthetic Factor Analysis Based on Maximum Weight and Minimum Redundancy Feature Selection
por: Guo, Yuting, et al.
Publicado: (2013)