Cargando…
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspec...
Autores principales: | Yuan, Gonglin, Duan, Xiabin, Liu, Wenjie, Wang, Xiaoliang, Cui, Zengru, Sheng, Zhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621041/ https://www.ncbi.nlm.nih.gov/pubmed/26502409 http://dx.doi.org/10.1371/journal.pone.0140071 |
Ejemplares similares
-
A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations
por: Cui, Zengru, et al.
Publicado: (2015) -
The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization
por: Yuan, Gonglin, et al.
Publicado: (2016) -
A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization
por: Li, Xiangrong, et al.
Publicado: (2015) -
A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations
por: Yuan, Gonglin, et al.
Publicado: (2018) -
A modified three-term PRP conjugate gradient algorithm for optimization models
por: Wu, Yanlin
Publicado: (2017)