Cargando…
A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations
This paper proposes a modified BFGS formula using a trust region model for solving nonsmooth convex minimizations by using the Moreau-Yosida regularization (smoothing) approach and a new secant equation with a BFGS update formula. Our algorithm uses the function value information and gradient value...
Autores principales: | Cui, Zengru, Yuan, Gonglin, Sheng, Zhou, Liu, Wenjie, Wang, Xiaoliang, Duan, Xiabin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621044/ https://www.ncbi.nlm.nih.gov/pubmed/26501775 http://dx.doi.org/10.1371/journal.pone.0140606 |
Ejemplares similares
-
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
por: Yuan, Gonglin, et al.
Publicado: (2015) -
A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations
por: Li, Yong, et al.
Publicado: (2015) -
The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization
por: Yuan, Gonglin, et al.
Publicado: (2016) -
Generalized convexity, nonsmooth variational inequalities, and nonsmooth optimization
por: Ansari, Qamrul Hasan
Publicado: (2013) -
Subgradient ellipsoid method for nonsmooth convex problems
por: Rodomanov, Anton, et al.
Publicado: (2022)