Cargando…
Enhanced Z-LDA for Small Sample Size Training in Brain-Computer Interface Systems
Background. Usually the training set of online brain-computer interface (BCI) experiment is small. For the small training set, it lacks enough information to deeply train the classifier, resulting in the poor classification performance during online testing. Methods. In this paper, on the basis of Z...
Autores principales: | Gao, Dongrui, Zhang, Rui, Liu, Tiejun, Li, Fali, Ma, Teng, Lv, Xulin, Li, Peiyang, Yao, Dezhong, Xu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621351/ https://www.ncbi.nlm.nih.gov/pubmed/26550023 http://dx.doi.org/10.1155/2015/680769 |
Ejemplares similares
-
An Enhanced Probabilistic LDA for Multi-Class Brain Computer Interface
por: Xu, Peng, et al.
Publicado: (2011) -
An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface
por: Ma, Teng, et al.
Publicado: (2018) -
Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces
por: Zhang, Rui, et al.
Publicado: (2013) -
Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface
por: Zhang, Yangsong, et al.
Publicado: (2012) -
Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application
por: Naseer, Noman, et al.
Publicado: (2016)