Cargando…
Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks
This study evaluated the depth of anesthesia (DoA) index using artificial neural networks (ANN) which is performed as the modeling technique. Totally 63-patient data is addressed, for both modeling and testing of 17 and 46 patients, respectively. The empirical mode decomposition (EMD) is utilized to...
Autores principales: | Sadrawi, Muammar, Fan, Shou-Zen, Abbod, Maysam F., Jen, Kuo-Kuang, Shieh, Jiann-Shing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621366/ https://www.ncbi.nlm.nih.gov/pubmed/26568957 http://dx.doi.org/10.1155/2015/536863 |
Ejemplares similares
-
EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks
por: Liu, Quan, et al.
Publicado: (2015) -
Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography
por: Sadrawi, Muammar, et al.
Publicado: (2020) -
Cardiopulmonary Resuscitation Pattern Evaluation Based on Ensemble Empirical Mode Decomposition Filter via Nonlinear Approaches
por: Sadrawi, Muammar, et al.
Publicado: (2016) -
Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder
por: Sadrawi, Muammar, et al.
Publicado: (2021) -
HRV-derived data similarity and distribution index based on ensemble neural network for measuring depth of anaesthesia
por: Liu, Quan, et al.
Publicado: (2017)