Cargando…

MicroRNA-451: epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma

Increasing evidence indicates that dysregulation of microRNAs (miRNAs) plays critical roles in malignant transformation and tumor progression. Previously, we have shown that microRNA-451 (miR-451) inhibits growth, increases chemo- or radiosensitivity and reverses epithelial to mesenchymal transition...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Jia-Yuan, Zhang, Kai, Chen, Dong-Qin, Chen, Jing, Feng, Bing, Song, Haizhu, Chen, Yitian, Zhu, Ziman, Lu, Lei, De, Wei, Wang, Rui, Chen, Long-Bang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621914/
https://www.ncbi.nlm.nih.gov/pubmed/26164082
Descripción
Sumario:Increasing evidence indicates that dysregulation of microRNAs (miRNAs) plays critical roles in malignant transformation and tumor progression. Previously, we have shown that microRNA-451 (miR-451) inhibits growth, increases chemo- or radiosensitivity and reverses epithelial to mesenchymal transition (EMT) in lung cancer. However, the roles of miR-451 in hepatocelluar carcinoma (HCC) progression and metastasis are still largely unknown. Reduced miR-451 in HCC tissues was observed to be significantly correlated with advanced clinical stage, metastasis and worse disease-free or overall survival. Through gain- and loss-of function experiments, we demonstrated that miR-451 inhibited cell growth, induced G0/G1 arrest and promoted apoptosis in HCC cells. Importantly, miR-451 could inhibit the migration and invasion in vitro, as well as in vivo metastasis of HCC cells through regulating EMT process. Moreover, the oncogene c-Myc was identified as a direct and functional target of miR-451 in HCC cells. Knockdown of c-Myc phenocopied the effects of miR-451 on EMT and metastasis of HCC cells, whereas overexpression of c-Myc partially attenuated the functions of miR-451 restoration. Furthermore, miR-451 downregulation-induced c-Myc overexpression leads to the activation of Erk1/2 signaling, which induces acquisition of EMT phenotype through regulation of GSK-3β/snail/E-cadherin and the increased expression of MMPs family members in HCC cells. Collectively, these data demonstrated that miR-451 is a novel prognostic biomarker for HCC patients and that function as a potential metastasis inhibitor in HCC cells through activation of the Erk1/2 signaling, at least partially by targeting c-Myc. Thus, targeting miR-451/c-Myc/Erk1/2 axis may be a potential strategy for the treatment of metastatic HCC.