Cargando…
Lightweight Breast Implants: A Novel Solution for Breast Augmentation and Reconstruction Mammaplasty
Breast augmentation and reconstruction mammaplasty have been in practice for decades and are highly prevalent surgeries performed worldwide. While overall patient satisfaction is high, common long-term effects include breast tissue atrophy, accelerated ptosis and inframammary fold breakdown. Increas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622048/ https://www.ncbi.nlm.nih.gov/pubmed/26333989 http://dx.doi.org/10.1093/asj/sjv080 |
Sumario: | Breast augmentation and reconstruction mammaplasty have been in practice for decades and are highly prevalent surgeries performed worldwide. While overall patient satisfaction is high, common long-term effects include breast tissue atrophy, accelerated ptosis and inframammary fold breakdown. Increasing evidence attributes these events to the durative loading and compressive forces introduced by the breast implants. Mechanical challenges exceeding the elastic capacity of the breast tissue components, eventually lead to irreversible tissue stretching, directly proportional to the introduced mass. Thus, it is suggested that, contrary to long-standing dogmas, implant weight, rather than its volume, stands at the basis of future tissue compromise and deformation. A novel lightweight implant has been developed to address the drawbacks of traditional breast implants, which demonstrate equivalence between their size and weight. The B-Lite(®) breast implant (G&G Biotechnology Ltd., Haifa, Israel) design allows for a reduction in implant weight of up to 30%, while maintaining the size, form, and function of traditional breast implants. The CE-marked device can be effectively implanted using standard of care procedures and has been established safe for human use. Implantation of the B-Lite(®) breast implant is projected to significantly reduce the inherent strains imposed by standard implants, thereby conserving tissue stability and integrity over time. In summary, this novel, lightweight breast implant promises to reduce breast tissue compromise and deformation and subsequent reoperation, further improving patient safety and satisfaction. |
---|