Cargando…

Climatic Influences on Cryptoccoccus gattii Populations, Vancouver Island, Canada, 2002–2004

Vancouver Island, Canada, reports the world’s highest incidence of Cryptococcus gattii infection among humans and animals. To identify key biophysical factors modulating environmental concentrations, we evaluated monthly concentrations of C. gatti in air, soil, and trees over a 3-year period. The 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Uejio, Christopher K., Mak, Sunny, Manangan, Arie, Luber, George, Bartlett, Karen H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centers for Disease Control and Prevention 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622228/
https://www.ncbi.nlm.nih.gov/pubmed/26484590
http://dx.doi.org/10.3201/eid2111.141161
Descripción
Sumario:Vancouver Island, Canada, reports the world’s highest incidence of Cryptococcus gattii infection among humans and animals. To identify key biophysical factors modulating environmental concentrations, we evaluated monthly concentrations of C. gatti in air, soil, and trees over a 3-year period. The 2 study datasets were repeatedly measured plots and newly sampled plots. We used hierarchical generalized linear and mixed effect models to determine associations. Climate systematically influenced C. gattii concentrations in all environmental media tested; in soil and on trees, concentrations decreased when temperatures were warmer. Wind may be a key process that transferred C. gattii from soil into air and onto trees. C. gattii results for tree and air samples were more likely to be positive during periods of higher solar radiation. These results improve the understanding of the places and periods with the greatest C. gattii colonization. Refined risk projections may help susceptible persons avoid activities that disturb the topsoil during relatively cool summer days.