Cargando…
The luteotrophic function of galectin-1 by binding to the glycans on vascular endothelial growth factor receptor-2 in bovine luteal cells
The corpus luteum (CL) is a temporary endocrine gland producing a large amount of progesterone, which is essential for the establishment and maintenance of pregnancy. Galectin-1 is a β-galactose-binding protein that can modify functions of membrane glycoproteins and is expressed in the CL of mice an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society for Reproduction and Development
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623150/ https://www.ncbi.nlm.nih.gov/pubmed/26155753 http://dx.doi.org/10.1262/jrd.2015-056 |
Sumario: | The corpus luteum (CL) is a temporary endocrine gland producing a large amount of progesterone, which is essential for the establishment and maintenance of pregnancy. Galectin-1 is a β-galactose-binding protein that can modify functions of membrane glycoproteins and is expressed in the CL of mice and women. However, the physiological role of galectin-1 in the CL is unclear. In the present study, we investigated the expression and localization of galectin-1 in the bovine CL and the effect of galectin-1 on cultured luteal steroidogenic cells (LSCs) with special reference to its binding to the glycans on vascular endothelial growth factor receptor-2 (VEGFR-2). Galectin-1 protein was highly expressed at the mid and late luteal stages in the membrane fraction of bovine CL tissue and was localized to the surface of LSCs in a carbohydrate-dependent manner. Galectin-1 increased the viability in cultured LSCs. However, the viability of LSCs was decreased by addition of β-lactose, a competitive carbohydrate inhibitor of galectin-1 binding activity. VEGFR-2 protein, like galectin-1, is also highly expressed in the mid CL, and it was modified by multi-antennary glycans, which can be recognized by galectin-1. An overlay assay using biotinylated galectin-1 revealed that galectin-1 directly binds to asparagine-linked glycans (N-glycans) on VEGFR-2. Enhancement of LSC viability by galectin-1 was suppressed by a selective inhibitor of VEGFR-2. The overall findings suggest that galectin-1 plays a role as a survival factor in the bovine CL, possibly by binding to N-glycans on VEGFR-2. |
---|