Cargando…
Complex network analysis of resting state EEG in amnestic mild cognitive impairment patients with type 2 diabetes
Purpose: Diabetes is a great risk factor for dementia and mild cognitive impairment (MCI). This study investigates whether complex network-derived features in resting state EEG (rsEEG) could be applied as a biomarker to distinguish amnestic mild cognitive impairment (aMCI) from normal cognitive func...
Autores principales: | Zeng, Ke, Wang, Yinghua, Ouyang, Gaoxiang, Bian, Zhijie, Wang, Lei, Li, Xiaoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624867/ https://www.ncbi.nlm.nih.gov/pubmed/26578946 http://dx.doi.org/10.3389/fncom.2015.00133 |
Ejemplares similares
-
Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes
por: Bian, Zhijie, et al.
Publicado: (2014) -
Cortical Source Multivariate EEG Synchronization Analysis on Amnestic Mild Cognitive Impairment in Type 2 Diabetes
por: Cui, Dong, et al.
Publicado: (2014) -
Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies
por: Tam, Angela, et al.
Publicado: (2015) -
Changes in Resting-State Functional Connectivity of Cerebellum in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: A Case-Control Study
por: Zhou, Zhi, et al.
Publicado: (2021) -
Concurrent Structural and Functional Patterns in Patients With Amnestic Mild Cognitive Impairment
por: Liu, Li, et al.
Publicado: (2022)