Cargando…
When Ontogeny Matters: A New Japanese Species of Brittle Star Illustrates the Importance of Considering both Adult and Juvenile Characters in Taxonomic Practice
Current taxonomy offers numerous approaches and methods for species delimitation and description. However, most of them are based on the adult characters and rarely suggest a dynamic representation of developmental transformations of taxonomically important features. Here we show how the underestima...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625035/ https://www.ncbi.nlm.nih.gov/pubmed/26509273 http://dx.doi.org/10.1371/journal.pone.0139463 |
Sumario: | Current taxonomy offers numerous approaches and methods for species delimitation and description. However, most of them are based on the adult characters and rarely suggest a dynamic representation of developmental transformations of taxonomically important features. Here we show how the underestimation of ontogenetic changes may result in long term lack of recognition of a new species of one of the most common ophiacanthid brittle stars (Echinodermata: Ophiuroidea) from the North Pacific. Based on vast material collected predominantly by various Japanese expeditions in the course of more than 50 years, and thorough study of appropriate type material, we revise the complex of three common species of the ophiuroid genus Ophiacantha which have been persistently confused with each other. The present study thus reveals the previously unrecognized new species Ophiacantha kokusai sp.nov. which is commonly distributed off the Pacific coast of Japan. The new species shows developmental differentiation from the closely related species Ophiacantha rhachophora H. L. Clark, 1911 and retains clearly expressed early juvenile features in the adult morphology. Another species, Ophiacantha clypeata Kyte, 1977, which had been separated from O. rhachophora, is in turn shown to be just a juvenile stage of another North Pacific species, Ophiacantha trachybactra H.L. Clark, 1911. For every species, detailed morphological data from both adult and juvenile specimens based on scanning electron microscopy are presented. A special grinding method showing complex internal features has been utilized for the first time. For all three species in this complex, a clear bathymetric differentiation is revealed: O. rhachophora predominantly inhabits shallow waters, 0–250 m, the new species O. kokusai lives deeper, at 250–600 m, and the third species, O. trachybactra, is found at 500–2,000 m. The present case clearly highlights the importance of considering developmental transformations, not only for a limited number of model organisms, but as part of the taxonomic process. |
---|