Cargando…
Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition
Accurate descriptors of muscular activity play an important role in clinical practice and rehabilitation research. Such descriptors are features of myoelectric signals extracted from sliding time windows. A wide variety of myoelectric features have been used as inputs to pattern recognition algorith...
Autor principal: | Ortiz-Catalan, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625080/ https://www.ncbi.nlm.nih.gov/pubmed/26578873 http://dx.doi.org/10.3389/fnins.2015.00416 |
Ejemplares similares
-
Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition
por: Earley, Eric J., et al.
Publicado: (2022) -
Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements
por: Abbaspour, Sara, et al.
Publicado: (2021) -
Classification complexity in myoelectric pattern recognition
por: Nilsson, Niclas, et al.
Publicado: (2017) -
Combining Vibrotactile Feedback with Volitional Myoelectric Control for Robotic Transtibial Prostheses
por: Chen, Baojun, et al.
Publicado: (2016) -
Empirical Myoelectric Feature Extraction and Pattern Recognition in Hemiplegic Distal Movement Decoding
por: Anastasiev, Alexey, et al.
Publicado: (2023)