Cargando…
Effects of thresholding on correlation-based image similarity metrics
The computation of image similarity is important for a wide range of analyses in neuroimaging, from decoding to meta-analysis. In many cases the images being compared have empty voxels, but the effects of such empty voxels on image similarity metrics are poorly understood. We present a detailed inve...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625081/ https://www.ncbi.nlm.nih.gov/pubmed/26578875 http://dx.doi.org/10.3389/fnins.2015.00418 |
Sumario: | The computation of image similarity is important for a wide range of analyses in neuroimaging, from decoding to meta-analysis. In many cases the images being compared have empty voxels, but the effects of such empty voxels on image similarity metrics are poorly understood. We present a detailed investigation of the influence of different degrees of image thresholding on the outcome of pairwise image comparison. Given a pair of brain maps for which one of the maps is thresholded, we show that an analysis using the intersection of non-zero voxels across images at a threshold of Z = ±1.0 maximizes accuracy for retrieval of a list of maps of the same contrast, and thresholding up to Z = ±2.0 can increase accuracy as compared to comparison using unthresholded maps. Finally, maps can be thresholded up to to Z = ±3.0 (corresponding to 25% of voxels non-empty within a standard brain mask) and still maintain a lower bound of 90% accuracy. Our results suggest that a small degree of thresholding may improve the accuracy of image similarity computations, and that robust meta-analytic image similarity comparisons can be obtained using thresholded images. |
---|