Cargando…

Nanoparticle Targeting and Cholesterol Flux Through Scavenger Receptor Type B-1 Inhibits Cellular Exosome Uptake

Exosomes are nanoscale vesicles that mediate intercellular communication. Cellular exosome uptake mechanisms are not well defined partly due to the lack of specific inhibitors of this complex cellular process. Exosome uptake depends on cholesterol-rich membrane microdomains called lipid rafts, and c...

Descripción completa

Detalles Bibliográficos
Autores principales: Plebanek, Michael P., Mutharasan, R. Kannan, Volpert, Olga, Matov, Alexandre, Gatlin, Jesse C., Thaxton, C. Shad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625174/
https://www.ncbi.nlm.nih.gov/pubmed/26511855
http://dx.doi.org/10.1038/srep15724
Descripción
Sumario:Exosomes are nanoscale vesicles that mediate intercellular communication. Cellular exosome uptake mechanisms are not well defined partly due to the lack of specific inhibitors of this complex cellular process. Exosome uptake depends on cholesterol-rich membrane microdomains called lipid rafts, and can be blocked by non-specific depletion of plasma membrane cholesterol. Scavenger receptor type B-1 (SR-B1), found in lipid rafts, is a receptor for cholesterol-rich high-density lipoproteins (HDL). We hypothesized that a synthetic nanoparticle mimic of HDL (HDL NP) that binds SR-B1 and removes cholesterol through this receptor would inhibit cellular exosome uptake. In cell models, our data show that HDL NPs bind SR-B1, activate cholesterol efflux, and attenuate the influx of esterified cholesterol. As a result, HDL NP treatment results in decreased dynamics and clustering of SR-B1 contained in lipid rafts and potently inhibits cellular exosome uptake. Thus, SR-B1 and targeted HDL NPs provide a fundamental advance in studying cholesterol-dependent cellular uptake mechanisms.