Cargando…
Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and repo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625367/ https://www.ncbi.nlm.nih.gov/pubmed/26511149 http://dx.doi.org/10.1038/srep15852 |
_version_ | 1782397962126622720 |
---|---|
author | Regmi, Raju Al Balushi, Ahmed A. Rigneault, Hervé Gordon, Reuven Wenger, Jérôme |
author_facet | Regmi, Raju Al Balushi, Ahmed A. Rigneault, Hervé Gordon, Reuven Wenger, Jérôme |
author_sort | Regmi, Raju |
collection | PubMed |
description | Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10(−21) L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. |
format | Online Article Text |
id | pubmed-4625367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46253672015-11-03 Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture Regmi, Raju Al Balushi, Ahmed A. Rigneault, Hervé Gordon, Reuven Wenger, Jérôme Sci Rep Article Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10(−21) L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. Nature Publishing Group 2015-10-29 /pmc/articles/PMC4625367/ /pubmed/26511149 http://dx.doi.org/10.1038/srep15852 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Regmi, Raju Al Balushi, Ahmed A. Rigneault, Hervé Gordon, Reuven Wenger, Jérôme Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title | Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title_full | Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title_fullStr | Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title_full_unstemmed | Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title_short | Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
title_sort | nanoscale volume confinement and fluorescence enhancement with double nanohole aperture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625367/ https://www.ncbi.nlm.nih.gov/pubmed/26511149 http://dx.doi.org/10.1038/srep15852 |
work_keys_str_mv | AT regmiraju nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture AT albalushiahmeda nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture AT rigneaultherve nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture AT gordonreuven nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture AT wengerjerome nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture |