Cargando…

Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture

Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and repo...

Descripción completa

Detalles Bibliográficos
Autores principales: Regmi, Raju, Al Balushi, Ahmed A., Rigneault, Hervé, Gordon, Reuven, Wenger, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625367/
https://www.ncbi.nlm.nih.gov/pubmed/26511149
http://dx.doi.org/10.1038/srep15852
_version_ 1782397962126622720
author Regmi, Raju
Al Balushi, Ahmed A.
Rigneault, Hervé
Gordon, Reuven
Wenger, Jérôme
author_facet Regmi, Raju
Al Balushi, Ahmed A.
Rigneault, Hervé
Gordon, Reuven
Wenger, Jérôme
author_sort Regmi, Raju
collection PubMed
description Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10(−21) L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations.
format Online
Article
Text
id pubmed-4625367
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46253672015-11-03 Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture Regmi, Raju Al Balushi, Ahmed A. Rigneault, Hervé Gordon, Reuven Wenger, Jérôme Sci Rep Article Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10(−21) L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. Nature Publishing Group 2015-10-29 /pmc/articles/PMC4625367/ /pubmed/26511149 http://dx.doi.org/10.1038/srep15852 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Regmi, Raju
Al Balushi, Ahmed A.
Rigneault, Hervé
Gordon, Reuven
Wenger, Jérôme
Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title_full Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title_fullStr Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title_full_unstemmed Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title_short Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
title_sort nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625367/
https://www.ncbi.nlm.nih.gov/pubmed/26511149
http://dx.doi.org/10.1038/srep15852
work_keys_str_mv AT regmiraju nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture
AT albalushiahmeda nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture
AT rigneaultherve nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture
AT gordonreuven nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture
AT wengerjerome nanoscalevolumeconfinementandfluorescenceenhancementwithdoublenanoholeaperture