Cargando…
Novel gene sets improve set-level classification of prokaryotic gene expression data
BACKGROUND: Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The d...
Autores principales: | Holec, Matěj, Kuželka, Ondřej, železný, Filip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625461/ https://www.ncbi.nlm.nih.gov/pubmed/26511329 http://dx.doi.org/10.1186/s12859-015-0786-7 |
Ejemplares similares
-
Comparative evaluation of set-level techniques in predictive classification of gene expression samples
por: Holec, Matěj, et al.
Publicado: (2012) -
Prediction of DNA-binding propensity of proteins by the ball-histogram method using automatic template search
por: Szabóová, Andrea, et al.
Publicado: (2012) -
Prediction of DNA-binding proteins from relational features
por: Szabóová, Andrea, et al.
Publicado: (2012) -
Improving the prediction accuracy in classification using the combined data sets by ranks of gene expressions
por: Kim, Ki-Yeol, et al.
Publicado: (2008) -
Gene set analyses for interpreting microarray experiments on prokaryotic organisms
por: Tintle, Nathan L, et al.
Publicado: (2008)