Cargando…
Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance
We present a machine learning-based methodology capable of providing real-time (“nowcast”) and forecast estimates of influenza activity in the US by leveraging data from multiple data sources including: Google searches, Twitter microblogs, nearly real-time hospital visit records, and data from a par...
Autores principales: | Santillana, Mauricio, Nguyen, André T., Dredze, Mark, Paul, Michael J., Nsoesie, Elaine O., Brownstein, John S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626021/ https://www.ncbi.nlm.nih.gov/pubmed/26513245 http://dx.doi.org/10.1371/journal.pcbi.1004513 |
Ejemplares similares
-
Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data
por: McGough, Sarah F., et al.
Publicado: (2017) -
Using Clinicians’ Search Query Data to Monitor Influenza Epidemics
por: Santillana, Mauricio, et al.
Publicado: (2014) -
Computational Approaches to Influenza Surveillance: Beyond Timeliness
por: Nsoesie, Elaine O., et al.
Publicado: (2015) -
Using Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study
por: Broniatowski, David Andre, et al.
Publicado: (2015) -
Social Media as a Sentinel for Disease Surveillance: What Does Sociodemographic Status Have to Do with It?
por: Nsoesie, Elaine O., et al.
Publicado: (2016)