Cargando…

Gene microarray analyses for potential biomarkers of single and recurrent venous thromboembolism

Venous thromboembolism is a major cause of morbidity and mortality with a high recurrence rate. The present study aimed to explore the molecular mechanisms and potential biomarkers of single venous thromboembolism (SVTE) and recurrent venous thromboembolism (RVTE). The microarray dataset GSE19151 wa...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHOU, WUGANG, ZHANG, KE, CHEN, DONGRUI, GAO, PINGJIN, WANG, QIAO
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626143/
https://www.ncbi.nlm.nih.gov/pubmed/26397997
http://dx.doi.org/10.3892/mmr.2015.4349
Descripción
Sumario:Venous thromboembolism is a major cause of morbidity and mortality with a high recurrence rate. The present study aimed to explore the molecular mechanisms and potential biomarkers of single venous thromboembolism (SVTE) and recurrent venous thromboembolism (RVTE). The microarray dataset GSE19151 was downloaded from Gene Expression Omnibus, which contained data from whole blood samples from 63 healthy controls, 32 SVTE and 38 RVTE patients. Differentially expressed genes (DEGs) in the SVTE and RVTE groups compared with those in the controls were identified using the t-test, followed by clustering analysis of DEGs and samples. Functional and pathway enrichment analyses were performed for DEGs in patients with RVTE and SVTE, as well as specific DEGs in patients with RVTE. The identified 42 DEGs in RVTE were mainly enriched in biological processes of cellular protein metabolism, gene expression and translational elongation as well as in pathways associated with ribosomes, Parkinson's disease and oxidative phosphorylation. In SVTE, 20 DEGs were identified, which were mainly involved in biological processes of biopolymer biosynthesis, translational elongation and cellular protein metabolism as well as pathways associated with ribosomes and cardiac muscle contraction. In RVTE, 22 specific DEGs were mainly involved in translational elongation, negative regulation of the force of heart contraction by chemical signals, cell proliferation, ribosomal pathways and protein export. The identified DEGs of SVTE, including COX7C and UQCRQ, may be potential biomarkers for SVTE, and the specific DEGs of RVTE, including ADRBK1, NDUFA5 and ATP5O, may be potential biomarkers for RVTE.