Cargando…

Abnormal alterations in the Ca(2+)/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg(2+)-free solution

Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence-like seizure...

Descripción completa

Detalles Bibliográficos
Autores principales: LV, XINTONG, GUO, FENG, XU, XIAOXUE, CHEN, ZAIXING, SUN, XUEFEI, MIN, DONGYU, CAO, YONGGANG, SHI, XIANBAO, WANG, LEI, CHEN, TIANBAO, SHAW, CHRIS, GAO, HUILING, HAO, LIYING, CAI, JIQUN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626152/
https://www.ncbi.nlm.nih.gov/pubmed/26299765
http://dx.doi.org/10.3892/mmr.2015.4227
Descripción
Sumario:Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence-like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca(2+)/CaV1.2/CaM/CaMKII pathway in TRMs and in cultured hippocampal neurons exposed to Mg(2+)-free solution. The expression levels of CaV1.2, CaM and phosphorylated CaMKII (p-CaMKII; Thr-286) in these two models were examined using immunofluorescence and western blotting. Compared with Wistar rats, the expression levels of CaV1.2 and CaM were increased, and the expression of p-CaMKII was decreased in the TRM hippocampus. However, the expression of the targeted proteins was reversed in the TRM temporal cortex. A significant increase in the expression of CaM and decrease in the expression of CaV1.2 were observed in the TRM cerebellum. In the cultured neuron model, p-CaMKII and CaV1.2 were markedly decreased. In addition, neurons exhibiting co-localized expression of CaV1.2 and CaM immunoreactivities were detected. Furthermore, intracellular calcium concentrations were increased in these two models. For the first time, o the best of our knowledge, the data of the present study suggested that abnormal alterations in the Ca(2+)/CaV1.2/CaM/CaMKII pathway may be involved in epileptogenesis and in the phenotypes of TRMs and cultured hippocampal neurons exposed to Mg(2+)-free solution.