Cargando…
Preparation and evaluation of an Arg-Gly-Asp-modified chitosan/hydroxyapatite scaffold for application in bone tissue engineering
Bone tissue engineering has become a promising method for the repair of bone defects, and the production of a scaffold with high cell affinity and osseointegrative properties is crucial for successful bone substitute. Chitosan (CS)/hydroxyapatite (HA) composite was prepared by in situ compositing co...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626170/ https://www.ncbi.nlm.nih.gov/pubmed/26459053 http://dx.doi.org/10.3892/mmr.2015.4371 |
Sumario: | Bone tissue engineering has become a promising method for the repair of bone defects, and the production of a scaffold with high cell affinity and osseointegrative properties is crucial for successful bone substitute. Chitosan (CS)/hydroxyapatite (HA) composite was prepared by in situ compositing combined with lyophilization, and further modified by arginine-glycine-aspartic acid (RGD) via physical adsorption. In order to evaluate the cell adhesion rate, viability, morphology, and alkaline phosphatase (ALP) activity, the RGD-CS/HA scaffold was seeded with bone marrow stromal cells (BMSCs). The osseointegrative properties of the RGD-CS/HA scaffold were evaluated by in vivo heterotopic ossification and in vivo bone defect repair. After 4 h culture with the RGD-CS/HA scaffold, the adhesion rate of the BMSCs was 80.7%. After 3 days, BMSCs were fusiform in shape and evenly distributed on the RGD-CS/HA scaffold. Formation of extracellular matrix and numerous cell-cell interactions were observed after 48 h of culture, with an ALP content of 0.006±0.0008 U/l/ng. Furthermore, the osseointegrative ability and biomechanical properties of the RGD-CS/HA scaffold were comparable to that of normal bone tissue. The biocompatibility, cytocompatibility, histocompatibility and osseointegrative properties of the RGD-CS/HA scaffold support its use in bone tissue engineering applications. |
---|