Cargando…
Comparing interval estimates for small sample ordinal CFA models
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias...
Autor principal: | Natesan, Prathiba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626630/ https://www.ncbi.nlm.nih.gov/pubmed/26579002 http://dx.doi.org/10.3389/fpsyg.2015.01599 |
Ejemplares similares
-
CFA with binary variables in small samples: a comparison of two methods
por: Savalei, Victoria, et al.
Publicado: (2015) -
Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data
por: Wu, Jiun-Yu, et al.
Publicado: (2018) -
On Modeling Missing Data of an Incomplete Design in the CFA Framework
por: Schweizer, Karl, et al.
Publicado: (2020) -
Comparing the Bayesian Unknown Change-Point Model and Simulation Modeling Analysis to Analyze Single Case Experimental Designs
por: Natesan Batley, Prathiba, et al.
Publicado: (2021) -
Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
por: Natesan, Prathiba, et al.
Publicado: (2016)