Cargando…

Phonon and magnetic structure in δ-plutonium from density-functional theory

We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic...

Descripción completa

Detalles Bibliográficos
Autores principales: Söderlind, Per, Zhou, F., Landa, A., Klepeis, J. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626764/
https://www.ncbi.nlm.nih.gov/pubmed/26514238
http://dx.doi.org/10.1038/srep15958
Descripción
Sumario:We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.