Cargando…
Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS
PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicte...
Autores principales: | Zhang, Ping, Hong, Bo, He, Liang, Cheng, Fei, Zhao, Peng, Wei, Cailiang, Liu, Yunhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626962/ https://www.ncbi.nlm.nih.gov/pubmed/26426030 http://dx.doi.org/10.3390/ijerph121012171 |
Ejemplares similares
-
Spatial and Temporal Distribution of PM(2.5) Pollution in Xi’an City, China
por: Huang, Ping, et al.
Publicado: (2015) -
Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network
por: Wang, Weilin, et al.
Publicado: (2019) -
Spatial-temporal patterns of ambient fine particulate matter (PM(2.5)) and black carbon (BC) pollution in Accra
por: Alli, Abosede S, et al.
Publicado: (2021) -
Value Assessment of Health Losses Caused by PM(2.5) Pollution in Cities of Atmospheric Pollution Transmission Channel in the Beijing–Tianjin–Hebei Region, China
por: Xie, Zhixiang, et al.
Publicado: (2019) -
Spatial Equity of PM(2.5) Pollution Exposures in High-Density Metropolitan Areas Based on Remote Sensing, LBS and GIS Data: A Case Study in Wuhan, China
por: Shan, Zhuoran, et al.
Publicado: (2022)