Cargando…
Deletion of Smad3 improves cardiac allograft rejection in mice
T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627288/ https://www.ncbi.nlm.nih.gov/pubmed/26219259 |
_version_ | 1782398263921475584 |
---|---|
author | Wang, Ying-ying Jiang, Hong Wang, Yu-cheng Huang, Xiao-ru Pan, Jun Yang, Chen Shou, Zhang-fei Xiang, Shi-long Chen, Da-jin Lan, Hui-yao Chen, Jiang-hua |
author_facet | Wang, Ying-ying Jiang, Hong Wang, Yu-cheng Huang, Xiao-ru Pan, Jun Yang, Chen Shou, Zhang-fei Xiang, Shi-long Chen, Da-jin Lan, Hui-yao Chen, Jiang-hua |
author_sort | Wang, Ying-ying |
collection | PubMed |
description | T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft rejection in which donor hearts from BALB/c mice were transplanted into Smad3 knockout (KO) and wild type (WT) mice. Results showed that the cardiac allograft survival was prolonged in Smad3 KO recipients. This allograft protection was associated with a significant inhibition of proinflammatory cytokines (IL-1β, TNF-α, and MCP-1) and infiltration of neutrophils, CD3(+) T cells, and F4/80(+) macrophages. Importantly, deletion of Smad3 markedly suppressed T-bet and IFN-γ while enhancing GATA3 and IL-4 expression, resulting in a shift from the Th1 to Th2 immune responses. Furthermore, mice lacking Smad3 were also protected from the Th17-mediated cardiac injury, although the regulatory T cell (Treg) response was also suppressed. In conclusion, Smad3 is an immune regulator in T cell-mediated cardiac allograft rejection. Loss of Smad3 results in a shift from Th1 to Th2 but suppressing Th17 immune responses. Thus, modulation of TGF-β/Smad3 signaling may be a novel therapy for acute allograft rejection. |
format | Online Article Text |
id | pubmed-4627288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-46272882015-12-02 Deletion of Smad3 improves cardiac allograft rejection in mice Wang, Ying-ying Jiang, Hong Wang, Yu-cheng Huang, Xiao-ru Pan, Jun Yang, Chen Shou, Zhang-fei Xiang, Shi-long Chen, Da-jin Lan, Hui-yao Chen, Jiang-hua Oncotarget Research Paper: Pathology T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft rejection in which donor hearts from BALB/c mice were transplanted into Smad3 knockout (KO) and wild type (WT) mice. Results showed that the cardiac allograft survival was prolonged in Smad3 KO recipients. This allograft protection was associated with a significant inhibition of proinflammatory cytokines (IL-1β, TNF-α, and MCP-1) and infiltration of neutrophils, CD3(+) T cells, and F4/80(+) macrophages. Importantly, deletion of Smad3 markedly suppressed T-bet and IFN-γ while enhancing GATA3 and IL-4 expression, resulting in a shift from the Th1 to Th2 immune responses. Furthermore, mice lacking Smad3 were also protected from the Th17-mediated cardiac injury, although the regulatory T cell (Treg) response was also suppressed. In conclusion, Smad3 is an immune regulator in T cell-mediated cardiac allograft rejection. Loss of Smad3 results in a shift from Th1 to Th2 but suppressing Th17 immune responses. Thus, modulation of TGF-β/Smad3 signaling may be a novel therapy for acute allograft rejection. Impact Journals LLC 2015-07-13 /pmc/articles/PMC4627288/ /pubmed/26219259 Text en Copyright: © 2015 Wang et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper: Pathology Wang, Ying-ying Jiang, Hong Wang, Yu-cheng Huang, Xiao-ru Pan, Jun Yang, Chen Shou, Zhang-fei Xiang, Shi-long Chen, Da-jin Lan, Hui-yao Chen, Jiang-hua Deletion of Smad3 improves cardiac allograft rejection in mice |
title | Deletion of Smad3 improves cardiac allograft rejection in mice |
title_full | Deletion of Smad3 improves cardiac allograft rejection in mice |
title_fullStr | Deletion of Smad3 improves cardiac allograft rejection in mice |
title_full_unstemmed | Deletion of Smad3 improves cardiac allograft rejection in mice |
title_short | Deletion of Smad3 improves cardiac allograft rejection in mice |
title_sort | deletion of smad3 improves cardiac allograft rejection in mice |
topic | Research Paper: Pathology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627288/ https://www.ncbi.nlm.nih.gov/pubmed/26219259 |
work_keys_str_mv | AT wangyingying deletionofsmad3improvescardiacallograftrejectioninmice AT jianghong deletionofsmad3improvescardiacallograftrejectioninmice AT wangyucheng deletionofsmad3improvescardiacallograftrejectioninmice AT huangxiaoru deletionofsmad3improvescardiacallograftrejectioninmice AT panjun deletionofsmad3improvescardiacallograftrejectioninmice AT yangchen deletionofsmad3improvescardiacallograftrejectioninmice AT shouzhangfei deletionofsmad3improvescardiacallograftrejectioninmice AT xiangshilong deletionofsmad3improvescardiacallograftrejectioninmice AT chendajin deletionofsmad3improvescardiacallograftrejectioninmice AT lanhuiyao deletionofsmad3improvescardiacallograftrejectioninmice AT chenjianghua deletionofsmad3improvescardiacallograftrejectioninmice |