Cargando…

Sp1-driven up-regulation of miR-19a decreases RHOB and promotes pancreatic cancer

Cancer treatment alters microRNA (miRNA) expression, revealing potential therapeutic targets (oncotarget). Here we treated pancreatic cancer (ASPC-1) cells with either recombinant human endostatin (rh-endostatin) or gemcitabine. Then high-throughput sequencing assay was performed to screen for alter...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Yonggang, Yin, Hongzhuan, Zhang, Heying, Fang, Jun, Zheng, Wei, Li, Dan, Li, Yue, Cao, Wei, Sun, Cheng, Liang, Yusi, Zeng, Juan, Zou, Huawei, Fu, Weineng, Yang, Xianghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627316/
https://www.ncbi.nlm.nih.gov/pubmed/26041879
Descripción
Sumario:Cancer treatment alters microRNA (miRNA) expression, revealing potential therapeutic targets (oncotarget). Here we treated pancreatic cancer (ASPC-1) cells with either recombinant human endostatin (rh-endostatin) or gemcitabine. Then high-throughput sequencing assay was performed to screen for altered miRNAs. Both treatments decreased levels of MiR-19a. We found that miR-19a stimulated cell proliferation, migration, invasion in vitro and tumor growth in vivo. High levels of miR-19a correlated with poor prognosis in patients. Ras homolog family member B (RHOB) was identified as a direct target of miR-19a. Furthermore, RHOB was down-regulated in human pancreatic cancer samples. Restoration of RHOB induced apoptosis, inhibited proliferation and migration of ASPC-1 cells. SP-1 was identified as an upstream transcription factor of miR-19a gene, promoting miR-19a transcription. Rh-endostatin decreased miR-19a expression by down-regulating SP-1. These findings suggest that miR-19a is a potential therapeutic target in pancreatic cancer.