Cargando…
Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predict...
Autores principales: | Andersson, Jesper L.R., Sotiropoulos, Stamatios N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627362/ https://www.ncbi.nlm.nih.gov/pubmed/26236030 http://dx.doi.org/10.1016/j.neuroimage.2015.07.067 |
Ejemplares similares
-
Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction
por: Bastiani, Matteo, et al.
Publicado: (2019) -
Diffusion Acceleration with Gaussian process Estimated Reconstruction (DAGER)
por: Wu, Wenchuan, et al.
Publicado: (2019) -
DENOISING DIFFUSION MRI: CONSIDERATIONS AND IMPLICATIONS FOR ANALYSIS
por: Manzano-Patron, Jose-Pedro, et al.
Publicado: (2023) -
An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
por: Andersson, Jesper L.R., et al.
Publicado: (2016) -
Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI
por: Zhang, Guangwen, et al.
Publicado: (2016)