Cargando…
Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making
Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627723/ https://www.ncbi.nlm.nih.gov/pubmed/26517475 http://dx.doi.org/10.1371/journal.pcbi.1004519 |
_version_ | 1782398318862663680 |
---|---|
author | Aitchison, Laurence Bang, Dan Bahrami, Bahador Latham, Peter E. |
author_facet | Aitchison, Laurence Bang, Dan Bahrami, Bahador Latham, Peter E. |
author_sort | Aitchison, Laurence |
collection | PubMed |
description | Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computations underlying confidence reports remain unclear. In this paper, we present a fully Bayesian method for directly comparing models of confidence. Using a visual two-interval forced-choice task, we tested whether confidence reports reflect heuristic computations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a decision is to be correct given the sensory data). In a standard design in which subjects were first asked to make a decision, and only then gave their confidence, subjects were mostly Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated their confidence and decision simultaneously, they were roughly equally likely to use the Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest that, while people’s confidence reports can reflect Bayes optimal computations, even a small unusual twist or additional element of complexity can prevent optimality. |
format | Online Article Text |
id | pubmed-4627723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46277232015-11-06 Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making Aitchison, Laurence Bang, Dan Bahrami, Bahador Latham, Peter E. PLoS Comput Biol Research Article Humans stand out from other animals in that they are able to explicitly report on the reliability of their internal operations. This ability, which is known as metacognition, is typically studied by asking people to report their confidence in the correctness of some decision. However, the computations underlying confidence reports remain unclear. In this paper, we present a fully Bayesian method for directly comparing models of confidence. Using a visual two-interval forced-choice task, we tested whether confidence reports reflect heuristic computations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a decision is to be correct given the sensory data). In a standard design in which subjects were first asked to make a decision, and only then gave their confidence, subjects were mostly Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated their confidence and decision simultaneously, they were roughly equally likely to use the Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest that, while people’s confidence reports can reflect Bayes optimal computations, even a small unusual twist or additional element of complexity can prevent optimality. Public Library of Science 2015-10-30 /pmc/articles/PMC4627723/ /pubmed/26517475 http://dx.doi.org/10.1371/journal.pcbi.1004519 Text en © 2015 Aitchison et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Aitchison, Laurence Bang, Dan Bahrami, Bahador Latham, Peter E. Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title | Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title_full | Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title_fullStr | Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title_full_unstemmed | Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title_short | Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making |
title_sort | doubly bayesian analysis of confidence in perceptual decision-making |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627723/ https://www.ncbi.nlm.nih.gov/pubmed/26517475 http://dx.doi.org/10.1371/journal.pcbi.1004519 |
work_keys_str_mv | AT aitchisonlaurence doublybayesiananalysisofconfidenceinperceptualdecisionmaking AT bangdan doublybayesiananalysisofconfidenceinperceptualdecisionmaking AT bahramibahador doublybayesiananalysisofconfidenceinperceptualdecisionmaking AT lathampetere doublybayesiananalysisofconfidenceinperceptualdecisionmaking |