Cargando…
Facial expression recognition and histograms of oriented gradients: a comprehensive study
Automatic facial expression recognition (FER) is a topic of growing interest mainly due to the rapid spread of assistive technology applications, as human–robot interaction, where a robust emotional awareness is a key point to best accomplish the assistive task. This paper proposes a comprehensive s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628009/ https://www.ncbi.nlm.nih.gov/pubmed/26543779 http://dx.doi.org/10.1186/s40064-015-1427-3 |
Sumario: | Automatic facial expression recognition (FER) is a topic of growing interest mainly due to the rapid spread of assistive technology applications, as human–robot interaction, where a robust emotional awareness is a key point to best accomplish the assistive task. This paper proposes a comprehensive study on the application of histogram of oriented gradients (HOG) descriptor in the FER problem, highlighting as this powerful technique could be effectively exploited for this purpose. In particular, this paper highlights that a proper set of the HOG parameters can make this descriptor one of the most suitable to characterize facial expression peculiarities. A large experimental session, that can be divided into three different phases, was carried out exploiting a consolidated algorithmic pipeline. The first experimental phase was aimed at proving the suitability of the HOG descriptor to characterize facial expression traits and, to do this, a successful comparison with most commonly used FER frameworks was carried out. In the second experimental phase, different publicly available facial datasets were used to test the system on images acquired in different conditions (e.g. image resolution, lighting conditions, etc.). As a final phase, a test on continuous data streams was carried out on-line in order to validate the system in real-world operating conditions that simulated a real-time human–machine interaction. |
---|