Cargando…

VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation

BACKGROUND: Vacuolar protein sorting 35 (VPS35), a key component of retromer, plays an important role in endosome-to-Golgi retrieval of membrane proteins. Dysfunction of VPS35/retromer is a risk factor for neurodegenerative disorders, including AD (Alzheimer’s disease) and PD (Parkinson’s disease)....

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Yun, Tang, Fu-Lei, Sun, XiangDong, Wen, Lei, Mei, Lin, Tang, Bei-Sha, Xiong, Wen-Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628247/
https://www.ncbi.nlm.nih.gov/pubmed/26521016
http://dx.doi.org/10.1186/s13041-015-0156-4
Descripción
Sumario:BACKGROUND: Vacuolar protein sorting 35 (VPS35), a key component of retromer, plays an important role in endosome-to-Golgi retrieval of membrane proteins. Dysfunction of VPS35/retromer is a risk factor for neurodegenerative disorders, including AD (Alzheimer’s disease) and PD (Parkinson’s disease). However, exactly how VPS35-deficiency contributes to AD or PD pathogenesis remains poorly understood. RESULTS: We found that VPS35-deficiency impaired dendritic spine maturation and decreased glutamatergic transmission. AMPA receptors, GluA1 and GluA2, are significantly reduced in purified synaptosomal and PSD fractions from VPS35-deficient brain. The surface levels of AMPA receptors are also decreased in VPS35-deficient neurons. Additionally, VPS35 interacted with AMPA-type receptors, GluA1 and GluA2. Overexpression of GluA2, but not GluA1, could partially restore the spine maturation deficit in VPS35-deficient neurons. CONCLUSIONS: These results provide evidence for VPS35’s function in promoting spine maturation, which is likely through increasing AMPA receptor targeting to the postsynaptic membrane. Perturbation of such a VPS35/retromer function may contribute to the impaired glutamatergic transmission and pathogenesis of neurodegenerative disorders, such as AD and PD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13041-015-0156-4) contains supplementary material, which is available to authorized users.