Cargando…

MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum

BACKGROUND: Dwarf cottons are more resistant to damage from wind and rain and associated with stable, increased yields, and also desirable source for breeding the machine harvest varieties. In an effort to uncover the transcripts and miRNA networks involved in plant height, the transcriptome and sma...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Wenyan, Gong, Wenfang, He, Shoupu, Pan, Zhaoe, Sun, Junling, Du, Xiongming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628322/
https://www.ncbi.nlm.nih.gov/pubmed/26517985
http://dx.doi.org/10.1186/s12864-015-2071-6
_version_ 1782398429673029632
author An, Wenyan
Gong, Wenfang
He, Shoupu
Pan, Zhaoe
Sun, Junling
Du, Xiongming
author_facet An, Wenyan
Gong, Wenfang
He, Shoupu
Pan, Zhaoe
Sun, Junling
Du, Xiongming
author_sort An, Wenyan
collection PubMed
description BACKGROUND: Dwarf cottons are more resistant to damage from wind and rain and associated with stable, increased yields, and also desirable source for breeding the machine harvest varieties. In an effort to uncover the transcripts and miRNA networks involved in plant height, the transcriptome and small RNA sequencing were performed based on dwarf mutant Ari1327 (A1), tall-culm mutant Ari3697 (A3) and wild type Ari971 (A9) in Gossypium hirsutum. METHODS: The stem apexes of wild-type upland cotton (Ari971) and its dwarf mutant (Ari1327) and tall-culm mutant (Ari3697) at the fifth true leaf stage were extracted for RNA, respectively. Transcriptome and small RNA libraries were constructed and subjected to next generation sequencing. RESULTS: The transcriptome sequencing analysis showed that the enriched pathways of top 3 differentially expressed genes (DEGs) were categorized as carotenoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction in both A1–A9 and A3–A9. The ABA and IAA related factors were differentially expressed in the mutants. Importantly, we found the lower expressed SAUR and elevated expressed GH3, and ABA related genes such as NCED and PP2C maybe relate to reduced growth of the plant height in Ari1327 which was consistent with the higher auxin and ABA content in this mutant. Furthermore, miRNA160 targeted to the auxin response factor (ARF) and miRNA166 (gma-miR166u and gma-miR166h-3p) targeted to ABA responsive element binding factor were related to the mutation in cotton. We have noticed that the cell growth related factors (smg7 targeted by gra-miR482 and 6 novel miRNAs and pectate-lyases targeted by osa-miR159f), the redox reactions related factors (Cytochrome P450 targeted by miR172) and MYB genes targeted by miR828, miR858 and miR159 were also involved in plant height of the cotton mutants. A total of 226 conserved miRNAs representing 32 known miRNA families were obtained, and 38 novel miRNAs corresponding to 23 unique RNA sequences were identified. Total 531 targets for 211 conserved miRNAs were obtained. Using PAREsnip, 27 and 29 miRNA/target conserved interactions were validated in A1–A9 and A3–A9, respectively. Furthermore, miRNA160, miRNA858 and miRNA172 were validated to be up-regulated in A1–A9 but down-regulated in A3–A9, whereas miRNA159 showed the opposite regulation. CONCLUSIONS: This comprehensive interaction of the transcriptome and miRNA at tall-culm and dwarf mutant led to the discovery of regulatory mechanisms in plant height. It also provides the basis for in depth analyses of dwarf mutant genes for further breeding of dwarf cotton. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2071-6) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4628322
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-46283222015-11-01 MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum An, Wenyan Gong, Wenfang He, Shoupu Pan, Zhaoe Sun, Junling Du, Xiongming BMC Genomics Research Article BACKGROUND: Dwarf cottons are more resistant to damage from wind and rain and associated with stable, increased yields, and also desirable source for breeding the machine harvest varieties. In an effort to uncover the transcripts and miRNA networks involved in plant height, the transcriptome and small RNA sequencing were performed based on dwarf mutant Ari1327 (A1), tall-culm mutant Ari3697 (A3) and wild type Ari971 (A9) in Gossypium hirsutum. METHODS: The stem apexes of wild-type upland cotton (Ari971) and its dwarf mutant (Ari1327) and tall-culm mutant (Ari3697) at the fifth true leaf stage were extracted for RNA, respectively. Transcriptome and small RNA libraries were constructed and subjected to next generation sequencing. RESULTS: The transcriptome sequencing analysis showed that the enriched pathways of top 3 differentially expressed genes (DEGs) were categorized as carotenoid biosynthesis, plant-pathogen interaction and plant hormone signal transduction in both A1–A9 and A3–A9. The ABA and IAA related factors were differentially expressed in the mutants. Importantly, we found the lower expressed SAUR and elevated expressed GH3, and ABA related genes such as NCED and PP2C maybe relate to reduced growth of the plant height in Ari1327 which was consistent with the higher auxin and ABA content in this mutant. Furthermore, miRNA160 targeted to the auxin response factor (ARF) and miRNA166 (gma-miR166u and gma-miR166h-3p) targeted to ABA responsive element binding factor were related to the mutation in cotton. We have noticed that the cell growth related factors (smg7 targeted by gra-miR482 and 6 novel miRNAs and pectate-lyases targeted by osa-miR159f), the redox reactions related factors (Cytochrome P450 targeted by miR172) and MYB genes targeted by miR828, miR858 and miR159 were also involved in plant height of the cotton mutants. A total of 226 conserved miRNAs representing 32 known miRNA families were obtained, and 38 novel miRNAs corresponding to 23 unique RNA sequences were identified. Total 531 targets for 211 conserved miRNAs were obtained. Using PAREsnip, 27 and 29 miRNA/target conserved interactions were validated in A1–A9 and A3–A9, respectively. Furthermore, miRNA160, miRNA858 and miRNA172 were validated to be up-regulated in A1–A9 but down-regulated in A3–A9, whereas miRNA159 showed the opposite regulation. CONCLUSIONS: This comprehensive interaction of the transcriptome and miRNA at tall-culm and dwarf mutant led to the discovery of regulatory mechanisms in plant height. It also provides the basis for in depth analyses of dwarf mutant genes for further breeding of dwarf cotton. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2071-6) contains supplementary material, which is available to authorized users. BioMed Central 2015-10-30 /pmc/articles/PMC4628322/ /pubmed/26517985 http://dx.doi.org/10.1186/s12864-015-2071-6 Text en © An et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
An, Wenyan
Gong, Wenfang
He, Shoupu
Pan, Zhaoe
Sun, Junling
Du, Xiongming
MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title_full MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title_fullStr MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title_full_unstemmed MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title_short MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum
title_sort microrna and mrna expression profiling analysis revealed the regulation of plant height in gossypium hirsutum
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628322/
https://www.ncbi.nlm.nih.gov/pubmed/26517985
http://dx.doi.org/10.1186/s12864-015-2071-6
work_keys_str_mv AT anwenyan micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum
AT gongwenfang micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum
AT heshoupu micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum
AT panzhaoe micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum
AT sunjunling micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum
AT duxiongming micrornaandmrnaexpressionprofilinganalysisrevealedtheregulationofplantheightingossypiumhirsutum