Cargando…
Automated lesion detection on MRI scans using combined unsupervised and supervised methods
BACKGROUND: Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain lesions from a T1-weighted 3D MRI. The proposed method combines the advanta...
Autores principales: | Guo, Dazhou, Fridriksson, Julius, Fillmore, Paul, Rorden, Christopher, Yu, Hongkai, Zheng, Kang, Wang, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628334/ https://www.ncbi.nlm.nih.gov/pubmed/26518734 http://dx.doi.org/10.1186/s12880-015-0092-x |
Ejemplares similares
-
Regional White Matter Damage Predicts Speech Fluency in Chronic Post-Stroke Aphasia
por: Basilakos, Alexandra, et al.
Publicado: (2014) -
Automated Object Detection in Experimental Data Using Combination of Unsupervised and Supervised Methods
por: Wu, Yiran, et al.
Publicado: (2022) -
Removal of artifacts from resting-state fMRI data in stroke
por: Yourganov, Grigori, et al.
Publicado: (2017) -
Cerebral Perfusion in Chronic Stroke: Implications for Lesion-Symptom Mapping and Functional MRI
por: Richardson, Jessica D., et al.
Publicado: (2011) -
Connectome-based lesion-symptom mapping (CLSM): A novel approach to map neurological function()
por: Gleichgerrcht, Ezequiel, et al.
Publicado: (2017)