Cargando…
Fractal model of anomalous diffusion
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods...
Autor principal: | Gmachowski, Lech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628625/ https://www.ncbi.nlm.nih.gov/pubmed/26129728 http://dx.doi.org/10.1007/s00249-015-1054-5 |
Ejemplares similares
-
Fractal analysis of lateral movement in biomembranes
por: Gmachowski, Lech
Publicado: (2017) -
On the fractal meaning of the anomalous diffusion
por: Sukhanov, A D, et al.
Publicado: (1999) -
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
por: Arkhincheev, V E
Publicado: (2001) -
Spatiotemporal dynamics of the biological interface between cancer and the microenvironment: a fractal anomalous diffusion model with microenvironment plasticity
por: Tsai, Feng-Chou, et al.
Publicado: (2012) -
An exploration of fractal-based prognostic model and comparative analysis for second wave of COVID-19 diffusion
por: Easwaramoorthy, D., et al.
Publicado: (2021)