Cargando…

A New Binning Method for Metagenomics by One-Dimensional Cellular Automata

More and more developed and inexpensive next-generation sequencing (NGS) technologies allow us to extract vast sequence data from a sample containing multiple species. Characterizing the taxonomic diversity for the planet-size data plays an important role in the metagenomic studies, while a crucial...

Descripción completa

Detalles Bibliográficos
Autor principal: Lin, Ying-Chih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628670/
https://www.ncbi.nlm.nih.gov/pubmed/26557648
http://dx.doi.org/10.1155/2015/197895
Descripción
Sumario:More and more developed and inexpensive next-generation sequencing (NGS) technologies allow us to extract vast sequence data from a sample containing multiple species. Characterizing the taxonomic diversity for the planet-size data plays an important role in the metagenomic studies, while a crucial step for doing the study is the binning process to group sequence reads from similar species or taxonomic classes. The metagenomic binning remains a challenge work because of not only the various read noises but also the tremendous data volume. In this work, we propose an unsupervised binning method for NGS reads based on the one-dimensional cellular automaton (1D-CA). Our binning method facilities to reduce the memory usage because 1D-CA costs only linear space. Experiments on synthetic dataset exhibit that our method is helpful to identify species of lower abundance compared to the proposed tool.